توزیع
θ
{\displaystyle {\boldsymbol {\theta }}}
η
{\displaystyle {\boldsymbol {\eta }}}
تابع پارامتر معکوس
h
(
x
)
{\displaystyle h(x)}
T
(
x
)
{\displaystyle T(x)}
A
(
η
)
{\displaystyle A({\boldsymbol {\eta }})}
A
(
θ
)
{\displaystyle A({\boldsymbol {\theta }})}
Bernoulli distribution
p
ln
p
1
−
p
{\displaystyle \ln {\frac {p}{1-p}}}
1
1
+
e
−
η
=
e
η
1
+
e
η
{\displaystyle {\frac {1}{1+e^{-\eta }}}={\frac {e^{\eta }}{1+e^{\eta }}}}
1
{\displaystyle 1}
x
{\displaystyle x}
ln
(
1
+
e
η
)
{\displaystyle \ln(1+e^{\eta })}
−
ln
(
1
−
p
)
{\displaystyle -\ln(1-p)}
binomial distribution with known number of trials n
p
ln
p
1
−
p
{\displaystyle \ln {\frac {p}{1-p}}}
1
1
+
e
−
η
=
e
η
1
+
e
η
{\displaystyle {\frac {1}{1+e^{-\eta }}}={\frac {e^{\eta }}{1+e^{\eta }}}}
(
n
x
)
{\displaystyle {n \choose x}}
x
{\displaystyle x}
n
ln
(
1
+
e
η
)
{\displaystyle n\ln(1+e^{\eta })}
−
n
ln
(
1
−
p
)
{\displaystyle -n\ln(1-p)}
Poisson distribution
λ
ln
λ
{\displaystyle \ln \lambda }
e
η
{\displaystyle e^{\eta }}
1
x
!
{\displaystyle {\frac {1}{x!}}}
x
{\displaystyle x}
e
η
{\displaystyle e^{\eta }}
λ
{\displaystyle \lambda }
negative binomial distribution with known number of failures r
p
ln
p
{\displaystyle \ln p}
e
η
{\displaystyle e^{\eta }}
(
x
+
r
−
1
x
)
{\displaystyle {x+r-1 \choose x}}
x
{\displaystyle x}
−
r
ln
(
1
−
e
η
)
{\displaystyle -r\ln(1-e^{\eta })}
−
r
ln
(
1
−
p
)
{\displaystyle -r\ln(1-p)}
exponential distribution
λ
−
λ
{\displaystyle -\lambda }
−
η
{\displaystyle -\eta }
1
{\displaystyle 1}
x
{\displaystyle x}
−
ln
(
−
η
)
{\displaystyle -\ln(-\eta )}
−
ln
λ
{\displaystyle -\ln \lambda }
Pareto distribution with known minimum value x m
α
−
α
−
1
{\displaystyle -\alpha -1}
−
1
−
η
{\displaystyle -1-\eta }
1
{\displaystyle 1}
ln
x
{\displaystyle \ln x}
−
ln
(
−
1
−
η
)
+
(
1
+
η
)
ln
x
m
{\displaystyle -\ln(-1-\eta )+(1+\eta )\ln x_{\mathrm {m} }}
−
ln
α
−
α
ln
x
m
{\displaystyle -\ln \alpha -\alpha \ln x_{\mathrm {m} }}
Weibull distribution with known shape k
λ
−
1
λ
k
{\displaystyle -{\frac {1}{\lambda ^{k}}}}
(
−
η
)
−
1
k
{\displaystyle (-\eta )^{-{\frac {1}{k}}}}
x
k
−
1
{\displaystyle x^{k-1}}
x
k
{\displaystyle x^{k}}
−
ln
(
−
η
)
−
ln
k
{\displaystyle -\ln(-\eta )-\ln k}
k
ln
λ
−
ln
k
{\displaystyle k\ln \lambda -\ln k}
Laplace distribution with known mean μ
b
−
1
b
{\displaystyle -{\frac {1}{b}}}
−
1
η
{\displaystyle -{\frac {1}{\eta }}}
1
{\displaystyle 1}
|
x
−
μ
|
{\displaystyle |x-\mu |}
ln
(
−
2
η
)
{\displaystyle \ln \left(-{\frac {2}{\eta }}\right)}
ln
2
b
{\displaystyle \ln 2b}
chi-squared distribution
ν
ν
2
−
1
{\displaystyle {\frac {\nu }{2}}-1}
2
(
η
+
1
)
{\displaystyle 2(\eta +1)}
e
−
x
2
{\displaystyle e^{-{\frac {x}{2}}}}
ln
x
{\displaystyle \ln x}
ln
Γ
(
η
+
1
)
+
(
η
+
1
)
ln
2
{\displaystyle \ln \Gamma (\eta +1)+(\eta +1)\ln 2}
ln
Γ
(
ν
2
)
+
ν
2
ln
2
{\displaystyle \ln \Gamma \left({\frac {\nu }{2}}\right)+{\frac {\nu }{2}}\ln 2}
normal distribution known variance
μ
μ
σ
{\displaystyle {\frac {\mu }{\sigma }}}
σ
η
{\displaystyle \sigma \eta }
e
−
x
2
2
σ
2
2
π
σ
{\displaystyle {\frac {e^{-{\frac {x^{2}}{2\sigma ^{2}}}}}{{\sqrt {2\pi }}\sigma }}}
x
σ
{\displaystyle {\frac {x}{\sigma }}}
η
2
2
{\displaystyle {\frac {\eta ^{2}}{2}}}
μ
2
2
σ
2
{\displaystyle {\frac {\mu ^{2}}{2\sigma ^{2}}}}
normal distribution
μ,σ2
[
μ
σ
2
−
1
2
σ
2
]
{\displaystyle {\begin{bmatrix}{\dfrac {\mu }{\sigma ^{2}}}\\[10pt]-{\dfrac {1}{2\sigma ^{2}}}\end{bmatrix}}}
[
−
η
1
2
η
2
−
1
2
η
2
]
{\displaystyle {\begin{bmatrix}-{\dfrac {\eta _{1}}{2\eta _{2}}}\\[15pt]-{\dfrac {1}{2\eta _{2}}}\end{bmatrix}}}
1
2
π
{\displaystyle {\frac {1}{\sqrt {2\pi }}}}
[
x
x
2
]
{\displaystyle {\begin{bmatrix}x\\x^{2}\end{bmatrix}}}
−
η
1
2
4
η
2
−
1
2
ln
(
−
2
η
2
)
{\displaystyle -{\frac {\eta _{1}^{2}}{4\eta _{2}}}-{\frac {1}{2}}\ln(-2\eta _{2})}
μ
2
2
σ
2
+
ln
σ
{\displaystyle {\frac {\mu ^{2}}{2\sigma ^{2}}}+\ln \sigma }
lognormal distribution
μ,σ2
[
μ
σ
2
−
1
2
σ
2
]
{\displaystyle {\begin{bmatrix}{\dfrac {\mu }{\sigma ^{2}}}\\[10pt]-{\dfrac {1}{2\sigma ^{2}}}\end{bmatrix}}}
[
−
η
1
2
η
2
−
1
2
η
2
]
{\displaystyle {\begin{bmatrix}-{\dfrac {\eta _{1}}{2\eta _{2}}}\\[15pt]-{\dfrac {1}{2\eta _{2}}}\end{bmatrix}}}
1
2
π
x
{\displaystyle {\frac {1}{{\sqrt {2\pi }}x}}}
[
ln
x
(
ln
x
)
2
]
{\displaystyle {\begin{bmatrix}\ln x\\(\ln x)^{2}\end{bmatrix}}}
−
η
1
2
4
η
2
−
1
2
ln
(
−
2
η
2
)
{\displaystyle -{\frac {\eta _{1}^{2}}{4\eta _{2}}}-{\frac {1}{2}}\ln(-2\eta _{2})}
μ
2
2
σ
2
+
ln
σ
{\displaystyle {\frac {\mu ^{2}}{2\sigma ^{2}}}+\ln \sigma }
inverse Gaussian distribution
μ,λ
[
−
λ
2
μ
2
−
λ
2
]
{\displaystyle {\begin{bmatrix}-{\dfrac {\lambda }{2\mu ^{2}}}\\[15pt]-{\dfrac {\lambda }{2}}\end{bmatrix}}}
[
η
2
η
1
−
2
η
2
]
{\displaystyle {\begin{bmatrix}{\sqrt {\dfrac {\eta _{2}}{\eta _{1}}}}\\[15pt]-2\eta _{2}\end{bmatrix}}}
1
2
π
x
3
2
{\displaystyle {\frac {1}{{\sqrt {2\pi }}x^{\frac {3}{2}}}}}
[
x
1
x
]
{\displaystyle {\begin{bmatrix}x\\[5pt]{\dfrac {1}{x}}\end{bmatrix}}}
−
2
η
1
η
2
−
1
2
ln
(
−
2
η
2
)
{\displaystyle -2{\sqrt {\eta _{1}\eta _{2}}}-{\frac {1}{2}}\ln(-2\eta _{2})}
−
λ
μ
−
1
2
ln
λ
{\displaystyle -{\frac {\lambda }{\mu }}-{\frac {1}{2}}\ln \lambda }
gamma distribution
α,β
[
α
−
1
−
β
]
{\displaystyle {\begin{bmatrix}\alpha -1\\-\beta \end{bmatrix}}}
[
η
1
+
1
−
η
2
]
{\displaystyle {\begin{bmatrix}\eta _{1}+1\\-\eta _{2}\end{bmatrix}}}
1
{\displaystyle 1}
[
ln
x
x
]
{\displaystyle {\begin{bmatrix}\ln x\\x\end{bmatrix}}}
ln
Γ
(
η
1
+
1
)
−
(
η
1
+
1
)
ln
(
−
η
2
)
{\displaystyle \ln \Gamma (\eta _{1}+1)-(\eta _{1}+1)\ln(-\eta _{2})}
ln
Γ
(
α
)
−
α
ln
β
{\displaystyle \ln \Gamma (\alpha )-\alpha \ln \beta }
k , θ
[
k
−
1
−
1
θ
]
{\displaystyle {\begin{bmatrix}k-1\\[5pt]-{\dfrac {1}{\theta }}\end{bmatrix}}}
[
η
1
+
1
−
1
η
2
]
{\displaystyle {\begin{bmatrix}\eta _{1}+1\\[5pt]-{\dfrac {1}{\eta _{2}}}\end{bmatrix}}}
ln
Γ
(
k
)
+
k
ln
θ
{\displaystyle \ln \Gamma (k)+k\ln \theta }
inverse gamma distribution
α,β
[
−
α
−
1
−
β
]
{\displaystyle {\begin{bmatrix}-\alpha -1\\-\beta \end{bmatrix}}}
[
−
η
1
−
1
−
η
2
]
{\displaystyle {\begin{bmatrix}-\eta _{1}-1\\-\eta _{2}\end{bmatrix}}}
1
{\displaystyle 1}
[
ln
x
1
x
]
{\displaystyle {\begin{bmatrix}\ln x\\{\frac {1}{x}}\end{bmatrix}}}
ln
Γ
(
−
η
1
−
1
)
−
(
−
η
1
−
1
)
ln
(
−
η
2
)
{\displaystyle \ln \Gamma (-\eta _{1}-1)-(-\eta _{1}-1)\ln(-\eta _{2})}
ln
Γ
(
α
)
−
α
ln
β
{\displaystyle \ln \Gamma (\alpha )-\alpha \ln \beta }
scaled inverse chi-squared distribution
ν,σ2
[
−
ν
2
−
1
−
ν
σ
2
2
]
{\displaystyle {\begin{bmatrix}-{\dfrac {\nu }{2}}-1\\[10pt]-{\dfrac {\nu \sigma ^{2}}{2}}\end{bmatrix}}}
[
−
2
(
η
1
+
1
)
η
2
η
1
+
1
]
{\displaystyle {\begin{bmatrix}-2(\eta _{1}+1)\\[10pt]{\dfrac {\eta _{2}}{\eta _{1}+1}}\end{bmatrix}}}
1
{\displaystyle 1}
[
ln
x
1
x
]
{\displaystyle {\begin{bmatrix}\ln x\\{\frac {1}{x}}\end{bmatrix}}}
ln
Γ
(
−
η
1
−
1
)
−
(
−
η
1
−
1
)
ln
(
−
η
2
)
{\displaystyle \ln \Gamma (-\eta _{1}-1)-(-\eta _{1}-1)\ln(-\eta _{2})}
ln
Γ
(
ν
2
)
−
ν
2
ln
ν
σ
2
2
{\displaystyle \ln \Gamma \left({\frac {\nu }{2}}\right)-{\frac {\nu }{2}}\ln {\frac {\nu \sigma ^{2}}{2}}}
beta distribution
α,β
[
α
β
]
{\displaystyle {\begin{bmatrix}\alpha \\\beta \end{bmatrix}}}
[
η
1
η
2
]
{\displaystyle {\begin{bmatrix}\eta _{1}\\\eta _{2}\end{bmatrix}}}
1
x
(
1
−
x
)
{\displaystyle {\frac {1}{x(1-x)}}}
[
ln
x
ln
(
1
−
x
)
]
{\displaystyle {\begin{bmatrix}\ln x\\\ln(1-x)\end{bmatrix}}}
ln
Γ
(
η
1
)
+
ln
Γ
(
η
2
)
−
ln
Γ
(
η
1
+
η
2
)
{\displaystyle \ln \Gamma (\eta _{1})+\ln \Gamma (\eta _{2})-\ln \Gamma (\eta _{1}+\eta _{2})}
ln
Γ
(
α
)
+
ln
Γ
(
β
)
−
ln
Γ
(
α
+
β
)
{\displaystyle \ln \Gamma (\alpha )+\ln \Gamma (\beta )-\ln \Gamma (\alpha +\beta )}
multivariate normal distribution
μ ,Σ
[
Σ
−
1
μ
−
1
2
Σ
−
1
]
{\displaystyle {\begin{bmatrix}{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}\\[5pt]-{\frac {1}{2}}{\boldsymbol {\Sigma }}^{-1}\end{bmatrix}}}
[
−
1
2
η
2
−
1
η
1
−
1
2
η
2
−
1
]
{\displaystyle {\begin{bmatrix}-{\frac {1}{2}}{\boldsymbol {\eta }}_{2}^{-1}{\boldsymbol {\eta }}_{1}\\[5pt]-{\frac {1}{2}}{\boldsymbol {\eta }}_{2}^{-1}\end{bmatrix}}}
(
2
π
)
−
k
2
{\displaystyle (2\pi )^{-{\frac {k}{2}}}}
[
x
x
x
T
]
{\displaystyle {\begin{bmatrix}\mathbf {x} \\[5pt]\mathbf {x} \mathbf {x} ^{\mathrm {T} }\end{bmatrix}}}
−
1
4
η
1
T
η
2
−
1
η
1
−
1
2
ln
|
−
2
η
2
|
{\displaystyle -{\frac {1}{4}}{\boldsymbol {\eta }}_{1}^{\rm {T}}{\boldsymbol {\eta }}_{2}^{-1}{\boldsymbol {\eta }}_{1}-{\frac {1}{2}}\ln \left|-2{\boldsymbol {\eta }}_{2}\right|}
1
2
μ
T
Σ
−
1
μ
+
1
2
ln
|
Σ
|
{\displaystyle {\frac {1}{2}}{\boldsymbol {\mu }}^{\rm {T}}{\boldsymbol {\Sigma }}^{-1}{\boldsymbol {\mu }}+{\frac {1}{2}}\ln |{\boldsymbol {\Sigma }}|}
categorical distribution
p1 ,...,pk where
∑
i
=
1
k
p
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}p_{i}=1}
[
ln
p
1
⋮
ln
p
k
]
{\displaystyle {\begin{bmatrix}\ln p_{1}\\\vdots \\\ln p_{k}\end{bmatrix}}}
[
e
η
1
⋮
e
η
k
]
{\displaystyle {\begin{bmatrix}e^{\eta _{1}}\\\vdots \\e^{\eta _{k}}\end{bmatrix}}}
where
∑
i
=
1
k
e
η
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}e^{\eta _{i}}=1}
1
{\displaystyle 1}
[
[
x
=
1
]
⋮
[
x
=
k
]
]
{\displaystyle {\begin{bmatrix}[x=1]\\\vdots \\{[x=k]}\end{bmatrix}}}
[
x
=
i
]
{\displaystyle [x=i]}
is the Iverson bracket (1 if
x
=
i
{\displaystyle x=i}
, 0 otherwise).
0
{\displaystyle 0}
0
{\displaystyle 0}
categorical distribution
p1 ,...,pk where
∑
i
=
1
k
p
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}p_{i}=1}
[
ln
p
1
+
C
⋮
ln
p
k
+
C
]
{\displaystyle {\begin{bmatrix}\ln p_{1}+C\\\vdots \\\ln p_{k}+C\end{bmatrix}}}
[
1
C
e
η
1
⋮
1
C
e
η
k
]
=
{\displaystyle {\begin{bmatrix}{\dfrac {1}{C}}e^{\eta _{1}}\\\vdots \\{\dfrac {1}{C}}e^{\eta _{k}}\end{bmatrix}}=}
[
e
η
1
∑
i
=
1
k
e
η
i
⋮
e
η
k
∑
i
=
1
k
e
η
i
]
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\end{bmatrix}}}
where
∑
i
=
1
k
e
η
i
=
C
{\displaystyle \textstyle \sum _{i=1}^{k}e^{\eta _{i}}=C}
1
{\displaystyle 1}
[
[
x
=
1
]
⋮
[
x
=
k
]
]
{\displaystyle {\begin{bmatrix}[x=1]\\\vdots \\{[x=k]}\end{bmatrix}}}
[
x
=
i
]
{\displaystyle [x=i]}
is the Iverson bracket (1 if
x
=
i
{\displaystyle x=i}
, 0 otherwise).
0
{\displaystyle 0}
0
{\displaystyle 0}
categorical distribution
p1 ,...,pk where
p
k
=
1
−
∑
i
=
1
k
−
1
p
i
{\displaystyle p_{k}=1-\textstyle \sum _{i=1}^{k-1}p_{i}}
[
ln
p
1
p
k
⋮
ln
p
k
−
1
p
k
0
]
=
{\displaystyle {\begin{bmatrix}\ln {\dfrac {p_{1}}{p_{k}}}\\[10pt]\vdots \\[5pt]\ln {\dfrac {p_{k-1}}{p_{k}}}\\[15pt]0\end{bmatrix}}=}
[
ln
p
1
1
−
∑
i
=
1
k
−
1
p
i
⋮
ln
p
k
−
1
1
−
∑
i
=
1
k
−
1
p
i
0
]
{\displaystyle {\begin{bmatrix}\ln {\dfrac {p_{1}}{1-\sum _{i=1}^{k-1}p_{i}}}\\[10pt]\vdots \\[5pt]\ln {\dfrac {p_{k-1}}{1-\sum _{i=1}^{k-1}p_{i}}}\\[15pt]0\end{bmatrix}}}
[
e
η
1
∑
i
=
1
k
e
η
i
⋮
e
η
k
∑
i
=
1
k
e
η
i
]
=
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\end{bmatrix}}=}
[
e
η
1
1
+
∑
i
=
1
k
−
1
e
η
i
⋮
e
η
k
−
1
1
+
∑
i
=
1
k
−
1
e
η
i
1
1
+
∑
i
=
1
k
−
1
e
η
i
]
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k-1}}}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\\[15pt]{\dfrac {1}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\end{bmatrix}}}
1
{\displaystyle 1}
[
[
x
=
1
]
⋮
[
x
=
k
]
]
{\displaystyle {\begin{bmatrix}[x=1]\\\vdots \\{[x=k]}\end{bmatrix}}}
[
x
=
i
]
{\displaystyle [x=i]}
is the Iverson bracket (1 if
x
=
i
{\displaystyle x=i}
, 0 otherwise).
ln
(
∑
i
=
1
k
e
η
i
)
=
ln
(
1
+
∑
i
=
1
k
−
1
e
η
i
)
{\displaystyle \ln \left(\sum _{i=1}^{k}e^{\eta _{i}}\right)=\ln \left(1+\sum _{i=1}^{k-1}e^{\eta _{i}}\right)}
−
ln
p
k
=
−
ln
(
1
−
∑
i
=
1
k
−
1
p
i
)
{\displaystyle -\ln p_{k}=-\ln \left(1-\sum _{i=1}^{k-1}p_{i}\right)}
multinomial distribution with known number of trials n
p1 ,...,pk where
∑
i
=
1
k
p
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}p_{i}=1}
[
ln
p
1
⋮
ln
p
k
]
{\displaystyle {\begin{bmatrix}\ln p_{1}\\\vdots \\\ln p_{k}\end{bmatrix}}}
[
e
η
1
⋮
e
η
k
]
{\displaystyle {\begin{bmatrix}e^{\eta _{1}}\\\vdots \\e^{\eta _{k}}\end{bmatrix}}}
where
∑
i
=
1
k
e
η
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}e^{\eta _{i}}=1}
n
!
∏
i
=
1
k
x
i
!
{\displaystyle {\frac {n!}{\prod _{i=1}^{k}x_{i}!}}}
[
x
1
⋮
x
k
]
{\displaystyle {\begin{bmatrix}x_{1}\\\vdots \\x_{k}\end{bmatrix}}}
0
{\displaystyle 0}
0
{\displaystyle 0}
multinomial distribution with known number of trials n
p1 ,...,pk where
∑
i
=
1
k
p
i
=
1
{\displaystyle \textstyle \sum _{i=1}^{k}p_{i}=1}
[
ln
p
1
+
C
⋮
ln
p
k
+
C
]
{\displaystyle {\begin{bmatrix}\ln p_{1}+C\\\vdots \\\ln p_{k}+C\end{bmatrix}}}
[
1
C
e
η
1
⋮
1
C
e
η
k
]
=
{\displaystyle {\begin{bmatrix}{\dfrac {1}{C}}e^{\eta _{1}}\\\vdots \\{\dfrac {1}{C}}e^{\eta _{k}}\end{bmatrix}}=}
[
e
η
1
∑
i
=
1
k
e
η
i
⋮
e
η
k
∑
i
=
1
k
e
η
i
]
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\end{bmatrix}}}
where
∑
i
=
1
k
e
η
i
=
C
{\displaystyle \textstyle \sum _{i=1}^{k}e^{\eta _{i}}=C}
n
!
∏
i
=
1
k
x
i
!
{\displaystyle {\frac {n!}{\prod _{i=1}^{k}x_{i}!}}}
[
x
1
⋮
x
k
]
{\displaystyle {\begin{bmatrix}x_{1}\\\vdots \\x_{k}\end{bmatrix}}}
0
{\displaystyle 0}
0
{\displaystyle 0}
multinomial distribution with known number of trials n
p1 ,...,pk where
p
k
=
1
−
∑
i
=
1
k
−
1
p
i
{\displaystyle p_{k}=1-\textstyle \sum _{i=1}^{k-1}p_{i}}
[
ln
p
1
p
k
⋮
ln
p
k
−
1
p
k
0
]
=
{\displaystyle {\begin{bmatrix}\ln {\dfrac {p_{1}}{p_{k}}}\\[10pt]\vdots \\[5pt]\ln {\dfrac {p_{k-1}}{p_{k}}}\\[15pt]0\end{bmatrix}}=}
[
ln
p
1
1
−
∑
i
=
1
k
−
1
p
i
⋮
ln
p
k
−
1
1
−
∑
i
=
1
k
−
1
p
i
0
]
{\displaystyle {\begin{bmatrix}\ln {\dfrac {p_{1}}{1-\sum _{i=1}^{k-1}p_{i}}}\\[10pt]\vdots \\[5pt]\ln {\dfrac {p_{k-1}}{1-\sum _{i=1}^{k-1}p_{i}}}\\[15pt]0\end{bmatrix}}}
[
e
η
1
∑
i
=
1
k
e
η
i
⋮
e
η
k
∑
i
=
1
k
e
η
i
]
=
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k}}}{\sum _{i=1}^{k}e^{\eta _{i}}}}\end{bmatrix}}=}
[
e
η
1
1
+
∑
i
=
1
k
−
1
e
η
i
⋮
e
η
k
−
1
1
+
∑
i
=
1
k
−
1
e
η
i
1
1
+
∑
i
=
1
k
−
1
e
η
i
]
{\displaystyle {\begin{bmatrix}{\dfrac {e^{\eta _{1}}}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\\[10pt]\vdots \\[5pt]{\dfrac {e^{\eta _{k-1}}}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\\[15pt]{\dfrac {1}{1+\sum _{i=1}^{k-1}e^{\eta _{i}}}}\end{bmatrix}}}
n
!
∏
i
=
1
k
x
i
!
{\displaystyle {\frac {n!}{\prod _{i=1}^{k}x_{i}!}}}
[
x
1
⋮
x
k
]
{\displaystyle {\begin{bmatrix}x_{1}\\\vdots \\x_{k}\end{bmatrix}}}
n
ln
(
∑
i
=
1
k
e
η
i
)
=
n
ln
(
1
+
∑
i
=
1
k
−
1
e
η
i
)
{\displaystyle n\ln \left(\sum _{i=1}^{k}e^{\eta _{i}}\right)=n\ln \left(1+\sum _{i=1}^{k-1}e^{\eta _{i}}\right)}
−
n
ln
p
k
=
−
n
ln
(
1
−
∑
i
=
1
k
−
1
p
i
)
{\displaystyle -n\ln p_{k}=-n\ln \left(1-\sum _{i=1}^{k-1}p_{i}\right)}
Dirichlet distribution
α1 ,...,αk
[
α
1
⋮
α
k
]
{\displaystyle {\begin{bmatrix}\alpha _{1}\\\vdots \\\alpha _{k}\end{bmatrix}}}
[
η
1
⋮
η
k
]
{\displaystyle {\begin{bmatrix}\eta _{1}\\\vdots \\\eta _{k}\end{bmatrix}}}
1
∏
i
=
1
k
x
i
{\displaystyle {\frac {1}{\prod _{i=1}^{k}x_{i}}}}
[
ln
x
1
⋮
ln
x
k
]
{\displaystyle {\begin{bmatrix}\ln x_{1}\\\vdots \\\ln x_{k}\end{bmatrix}}}
∑
i
=
1
k
ln
Γ
(
η
i
)
−
ln
Γ
(
∑
i
=
1
k
η
i
)
{\displaystyle \sum _{i=1}^{k}\ln \Gamma (\eta _{i})-\ln \Gamma \left(\sum _{i=1}^{k}\eta _{i}\right)}
∑
i
=
1
k
ln
Γ
(
α
i
)
−
ln
Γ
(
∑
i
=
1
k
α
i
)
{\displaystyle \sum _{i=1}^{k}\ln \Gamma (\alpha _{i})-\ln \Gamma \left(\sum _{i=1}^{k}\alpha _{i}\right)}
Wishart distribution
V ,n
[
−
1
2
V
−
1
n
−
p
−
1
2
]
{\displaystyle {\begin{bmatrix}-{\frac {1}{2}}\mathbf {V} ^{-1}\\[5pt]{\dfrac {n-p-1}{2}}\end{bmatrix}}}
[
−
1
2
η
1
−
1
2
η
2
+
p
+
1
]
{\displaystyle {\begin{bmatrix}-{\frac {1}{2}}{{\boldsymbol {\eta }}_{1}}^{-1}\\[5pt]2\eta _{2}+p+1\end{bmatrix}}}
1
{\displaystyle 1}
[
X
ln
|
X
|
]
{\displaystyle {\begin{bmatrix}\mathbf {X} \\\ln |\mathbf {X} |\end{bmatrix}}}
−
(
η
2
+
p
+
1
2
)
ln
|
−
η
1
|
{\displaystyle -\left(\eta _{2}+{\frac {p+1}{2}}\right)\ln |-{\boldsymbol {\eta }}_{1}|}
+
ln
Γ
p
(
η
2
+
p
+
1
2
)
=
{\displaystyle +\ln \Gamma _{p}\left(\eta _{2}+{\frac {p+1}{2}}\right)=}
−
n
2
ln
|
−
η
1
|
+
ln
Γ
p
(
n
2
)
=
{\displaystyle -{\frac {n}{2}}\ln |-{\boldsymbol {\eta }}_{1}|+\ln \Gamma _{p}\left({\frac {n}{2}}\right)=}
(
η
2
+
p
+
1
2
)
(
p
ln
2
+
ln
|
V
|
)
{\displaystyle \left(\eta _{2}+{\frac {p+1}{2}}\right)(p\ln 2+\ln |\mathbf {V} |)}
+
ln
Γ
p
(
η
2
+
p
+
1
2
)
{\displaystyle +\ln \Gamma _{p}\left(\eta _{2}+{\frac {p+1}{2}}\right)}
n
2
(
p
ln
2
+
ln
|
V
|
)
+
ln
Γ
p
(
n
2
)
{\displaystyle {\frac {n}{2}}(p\ln 2+\ln |\mathbf {V} |)+\ln \Gamma _{p}\left({\frac {n}{2}}\right)}
inverse Wishart distribution
Ψ ,m
[
−
1
2
Ψ
−
m
+
p
+
1
2
]
{\displaystyle {\begin{bmatrix}-{\frac {1}{2}}{\boldsymbol {\Psi }}\\[5pt]-{\dfrac {m+p+1}{2}}\end{bmatrix}}}
[
−
2
η
1
−
(
2
η
2
+
p
+
1
)
]
{\displaystyle {\begin{bmatrix}-2{\boldsymbol {\eta }}_{1}\\[5pt]-(2\eta _{2}+p+1)\end{bmatrix}}}
1
{\displaystyle 1}
normal-gamma distribution
α,β,μ,λ
[
α
−
1
2
−
β
−
λ
μ
2
2
λ
μ
−
λ
2
]
{\displaystyle {\begin{bmatrix}\alpha -{\frac {1}{2}}\\-\beta -{\dfrac {\lambda \mu ^{2}}{2}}\\\lambda \mu \\-{\dfrac {\lambda }{2}}\end{bmatrix}}}
[
η
1
+
1
2
−
η
2
+
η
3
2
4
η
4
−
η
3
2
η
4
−
2
η
4
]
{\displaystyle {\begin{bmatrix}\eta _{1}+{\frac {1}{2}}\\-\eta _{2}+{\dfrac {\eta _{3}^{2}}{4\eta _{4}}}\\-{\dfrac {\eta _{3}}{2\eta _{4}}}\\-2\eta _{4}\end{bmatrix}}}
1
2
π
{\displaystyle {\dfrac {1}{\sqrt {2\pi }}}}
[
ln
τ
τ
τ
x
τ
x
2
]
{\displaystyle {\begin{bmatrix}\ln \tau \\\tau \\\tau x\\\tau x^{2}\end{bmatrix}}}
ln
Γ
(
η
1
+
1
2
)
−
1
2
ln
(
−
2
η
4
)
−
{\displaystyle \ln \Gamma \left(\eta _{1}+{\frac {1}{2}}\right)-{\frac {1}{2}}\ln \left(-2\eta _{4}\right)-}
−
(
η
1
+
1
2
)
ln
(
−
η
2
+
η
3
2
4
η
4
)
{\displaystyle -\left(\eta _{1}+{\frac {1}{2}}\right)\ln \left(-\eta _{2}+{\dfrac {\eta _{3}^{2}}{4\eta _{4}}}\right)}
ln
Γ
(
α
)
−
α
ln
β
−
1
2
ln
λ
{\displaystyle \ln \Gamma \left(\alpha \right)-\alpha \ln \beta -{\frac {1}{2}}\ln \lambda }